Skip to main content
Close
Publicación

Predicting Virological Response to HIV Treatment Over Time: A Tool for Settings With Different Definitions of Virological Response.

Ver todas las publicaciones

Methods: Two sets of random forest models were developed using 50,270 treatment change episodes from more than 20 countries. The models estimated viral load at different time points following the introduction of a new regimen from variables including baseline viral load, CD4 count, and treatment history. One set also used genotypes in their predictions. Independent data sets were used for evaluation.

Results: Both models achieved highly significant correlations between predicted and actual viral load changes (r = 0.67-0.68, mean absolute error of 0.73-0.74 log10 copies/mL). The models produced curves of virological response over time. Using failure definitions of 100, 400, or 1000 copies/mL, but not 50 copies/mL, both models were able to identify alternative regimens they predicted to be effective for the majority of cases where the new regimen prescribed in the clinic failed.

Conclusion: Both models achieved highly significant correlations between predicted and actual viral load changes (r = 0.67-0.68, mean absolute error of 0.73-0.74 log10 copies/mL). The models produced curves of virological response over time. Using failure definitions of 100, 400, or 1000 copies/mL, but not 50 copies/mL, both models were able to identify alternative regimens they predicted to be effective for the majority of cases where the new regimen prescribed in the clinic failed.

Not available in
This is not available in . You can go to the translated versions in these languages: